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A theoretical study is undertaken of the dynamics of a ball which is bouncing inelastically on a randomly
vibrating platform. Of interest are the distributions of the number of flights nf and the total time �c until the ball
has effectively “collapsed,” i.e., coalesced with the platform. In the strictly elastic case both distributions have
power law tails characterized by exponents that are universal, i.e., independent of the detail of the platform
noise distribution. However, in the inelastic case both distributions have exponential tails: P�nf�
�exp�−�1nf� and P��c��exp�−�2�c�. The decay exponents �1 and �2 depend continuously on the coefficient
of restitution and are nonuniversal; however, as one approaches the elastic limit, they vanish in a manner which
turns out to be universal. An explicit expression for �1 is provided for a particular case of the platform noise
distribution.
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I. INTRODUCTION

The study of granular materials and granular flows, see,
e.g., �1–3�, has highlighted the importance of the concept of
“inelastic collapse” �4,5�. The canonical example of inelastic
collapse concerns a ball bouncing on a static platform in a
constant gravitational field g. If u0 is the initial velocity with
which the ball is thrown up from the platform, the velocity at
subsequent bounces decreases geometrically until the ball
stops completely after a time �c=2u0 / �g�1−r��, where r is
the coefficient of restitution. Note that although the total
number of flights until the collapse nf is infinite, the total
flight time until the collapse is actually finite. Analogous
“collapse” transitions are also predicted theoretically for a
ball bouncing on a periodically vibrating plate �6–8� and for
a randomly accelerated particle near an absorbing boundary
�9–13�. Elegant experimental studies of inelastic processes in
granular layers subject to vertical vibrations may be found in
�14,15�.

The question we address in this paper is as follows: How
do these two physical observables, namely �i� the number of
flights nf until the “collapse” and �ii� the total time �c elapsed
before the “collapse,” behave for a ball bouncing on a plat-
form which itself vibrates in a noisy manner? This may be
viewed as a natural extension of the work presented in �6–8�,
although the precise meaning of the term “collapse” needs to
be made clear and is discussed below. First, however, let us
see what happens in a single collision between the ball and
the platform. Let � be the velocity of the platform and −ui be
the incident velocity of the ball. Then, just after the collision,
the platform velocity remains unchanged at � but the ball
bounces with velocity

ub = rui + �1 + r�� , �1�

where the coefficient of restitution 0�r�1 and r=1 corre-
sponds to the elastic limit. This result can easily be derived
by considering an inelastic collision between two particles of
mass m1 and m2 with incident velocities u1 and u2, respec-
tively. Let u1� and u2� be the postcollision velocities. Conser-
vation of momentum implies that m1u1+m2u2=m1u1�+m2u2�
and inelasticity implies u2�−u1�=−r�u2−u1�. Solving these
two equations when m2�m1 one gets u2�=u2 and u1�=−ru1
+ �1+r�u2. In our example, the platform corresponds to the
massive particle with velocity u2=� and the incident velocity
of the ball is u1=−ui. This gives the result in Eq. �1�. Thus
the bounce velocity un of the ball after the nth collision with
the platform satisfies a simple recurrence relation

un = run−1 + �n, �2�

where �n= �1+r��n with �n being the velocity of the platform
at the time of the nth collision. The recursion in Eq. �2� starts
with initial value u0�0.

We take the simplest conceptual model of a noisy plat-
form, whose abstraction is inspired by considering what hap-
pens when a ball is dropped onto a sinusoidally oscillating
platform whose amplitude A→0 and frequency of oscillation
	→
, such that the peak velocity A	 is small but nonzero.
As discussed in �6–8�, a typical trajectory will consist ini-
tially of an extended period where the relative velocity of the
ball and the platform is large, i.e., un� ��n�. Eventually, the
relative velocity will become small, i.e., un���n�, at which
point the ball can basically “stick” to the platform for a short
period, a process known as chattering �7�. One may think of
this as characterizing the collapsed phase, during which the
bounce velocity may quite possibly become negative at some
stage. See also the discussion in �16�. During the approach to
collapse, which is of interest to us in this paper, it is reason-
able to assume that the velocities of the platform at different
collision times are completely uncorrelated �16� and each of
them is drawn independently from a given distribution. This
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is equivalent to saying that the noise variables �n in Eq. �2�
are independent and identically distributed random variables,
each drawn from a given distribution ����. It is further rea-
sonable to assume, as long as un� ��n�, that ���� is continu-
ous and symmetric around �=0. Near the actual point of
“collapse,” where un���n�, in any physically realizable sys-
tem there will be an increased likelihood that the platform
velocity at impact will be positive �14,16� and the assump-
tion that ���� is symmetric will begin to break down. How-
ever, such complications are not expected to be of signifi-
cance as regards determining the tails of the relevant
distributions which govern the approach to collapse. Indeed,
in the same spirit, it is practical to take the first-passage
event wherein the bounce velocity according to Eq. �2� be-
comes negative for the first time as the definition of collapse.

When the platform has noisy vibrations both the number
of flights nf and the total time �c until the collapse become
random variables. Our main results, summarized below, con-
cern the distributions P�nf� and P��c� of these two random
variables.

�i� In the strictly elastic case r=1, we show that both of
these distributions have power law tails: P�nf��nf

−�1 for
large nf and P��c���c

−�1 for large �c, where the exponents
�1=3/2 and �2=4/3 are universal, i.e., independent of the
noise distribution ����, as long as it is continuous and sym-
metric.

�ii� In the inelastic case r1, on the other hand, both
of these distributions have exponential tails: P�nf�
�exp�−�1�r�nf� for large nf and P��c��exp�−�2�r��c� for
large �c. The decay exponents �1�r� and �2�r� depend con-
tinuously on r and, moreover, they are nonuniversal as they
depend explicitly on the noise distribution ����. The exact
expressions for �1�r� and �2�r� for an arbitrary noise distri-
bution ���� are, in general, hard to obtain. As an illustration,
we provide in an appendix explicit results for �1�r� for the
special noise distribution, ����= 1

2 exp�−����.
�iii� As one approaches the elastic limit, r→1, the decay

exponents �1�r� and �2�r� vanish irrespective of the noise
distribution. Most interestingly, the manner in which these
decay exponents approach zero as r→1 turns out to be uni-
versal. For example, we find that as r→1, �1�r��a�1−r�
and �2�r��bg�1−r�3/2 where g is the gravitational constant
and a and b are universal constants independent of the noise
distribution ����. We show that while a=1 is trivial, b
=0.405 024. . .. is nontrivial and is given by the smallest posi-
tive root of the equation, D2b2�−2�2b�=0 where Dp�z� is the
parabolic cylinder function of index p and argument z �17�.

II. STRICTLY ELASTIC CASE

We first consider the strictly elastic case r=1, against
which we wish to make a comparison once we have consid-
ered the inelastic case r1. The recursion relation in Eq. �2�
with r=1 reduces to a standard random walk

un = un−1 + �n �3�

starting with the initial value u0�0. The noise �n is drawn
independently for each n from the distribution ���� such that

	�n
=0 and we scale the noise so that it has unit variance,
i.e., 	�n

2
=1. We would like to compute the probability dis-
tributions of �i� the number of flights or collisions nf before
the “collapse,” i.e., before the velocity un evolving via the
random sequence in Eq. �3� becomes negative for the first
time, and �ii� the total flight time �c= 2

g�n=0
nf un elapsed before

the collapse.
These two distributions are, in general, nonuniversal in

the sense that they depend explicitly on the noise distribution
���� and are hard to compute for generic ����. For example,
let us consider how one would calculate the distribution of
the number of collisions before the collapse, P�nf ,u0�. De-
fine Q�n ,u0� to be the probability that the sequence in Eq.
�3�, starting at u0, does not change sign until step n. Then
P�nf ,u0�=Q�nf −1,u0�−Q�nf ,u0�. The probability Q�n ,u0�
satisfies the following integral equation:

Q�n,u0� = �
0




Q�n − 1,u����u� − u0�du�, �4�

starting from the initial condition, Q�0,u0�=1 for all u0�0.
Equation �4� follows from considering what happens at the
first step: suppose the ball jumps from u0 to u��0, with
probability ��u�−u0�. For the subsequent �n−1� steps, the
probability of no sign change, starting initially at u�, is just
Q�n−1,u��. The range of the integral �0,
� for u� in Eq. �4�
ensures that the process did not change sign in the first step.
Note that Eq. �4� uses the Markov property of the sequence
in Eq. �3�. Even though the right-hand side of Eq. �4� has a
convolution form, the exact solution for arbitrary n is diffi-
cult due to the fact that the lower limit of the integral is zero.
Naturally, the distribution of the collapse time �c will be even
harder to compute analytically.

There is, however, an important theorem due to Sparre
Andersen �18� which, in relation to the sequence Eq. �3�,
states the following: Given initial condition u0=0, the prob-
ability P�n� that the process first becomes negative on the
nth step is actually independent of the step distribution ����,
as long as it is continuous and symmetric. In fact, the theo-
rem proves that P�n�=��n− 1

2
� / �2��n!�, which implies that

P�n��n−3/2 for large n �19�. In our problem u0�0, so this
theorem does not strictly apply; nevertheless, it makes itself
felt when discussing the tail of the distribution of the number
of collisions before the collapse, P�nf�. We show later that
while the distributions P�nf� and P��c� are generically non-
universal, their tails are algebraic with exponents that are
universal. The behavior at the tails can be derived by analyz-
ing the corresponding quantities for a continuous time
Brownian motion, which is much easier to analyze. There-
fore we first review these quantities for the continuous time
Brownian motion. In Sec. II B, we use these results to pre-
dict the tails of the distributions in the discrete case.

A. Continuous time Brownian motion

Consider a Brownian motion y�t� evolving in continuous
time t via the Langevin equation
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dy

dt
= ��t� , �5�

where ��t� is a zero mean white noise with correlator
	��t���t��
=��t− t��. The motion starts at y�t=0�=y0. It is
relatively straightforward to compute the probability distri-
butions of �i� the first-passage time tf at which the process
crosses zero for the first time, and �ii� the area swept out by
the process until its first-passage time, A=0

tfy�t��dt�. Fol-
lowing �20�, we first consider �for reasons that become clear
later� the probability distribution P�T ,y0� of the general ob-
servable

T = �
0

tf

V�y�t���dt�, �6�

where V�y�t�� is an arbitrary functional of the process y�t�
and tf is the first-passage time of the process. It is useful to
study the Laplace transform of this distribution,

P̃�s,y0� =�exp�− s�
0

tf

V�y�t���dt��� = �
0




P�T,y0�e−sTdT ,

�7�

where 	 
 denotes an average over all realizations of the pro-
cess until its first-passage time. A typical path of the process
over the time interval �0, tf� may be split into an initial step
�y during the interval �0,�t� followed by the remaining
steps during the interval ��t , tf�. Then Eq. �7� can be written
as

P̃�s,y0� =�exp�− s�
0

tf

V�y�t���dt���
= 	e−sV�y0��tP̃�s,y0 + �y�
�y , �8�

where �y=��0��t. The average in the second part of Eq. �8�
is over all possible realizations of �y. Expanding in powers
of �t and using the fact that the noise ��t� is delta correlated,
i.e., 	��0�2
�1/�t as �t→0, one gets a backward Fokker-

Planck equation for P̃�s ,y0� in the space of the initial posi-
tion y0,

�1

2

�2

�y0
2 − sV�y0��P̃�s,y0� = 0. �9�

This differential equation is valid in the range y0� �0,
� and

satisfies the elementary boundary conditions P̃�s ,y0→0�=1

and P̃�s ,y0→
�=0.
We now consider certain choices for V�y� to make a con-

nection with the problems of interest. For the first-passage
time distribution we need to choose V�y�=1, so that T= tf

from Eq. �6�. The solution of Eq. �9� with V�y0�=1 can be
easily obtained,

P̃�s,y0� = exp�− �2sy0� . �10�

Inverting the Laplace transform, we get the required first-
passage time distribution, a result which is well-known, see,
e.g., �21,22�,

P�tf,y0� =
1

�2�

y0

tf
3/2 exp�−

y0
2

2tf
� �11�

valid for all y0�0 and tf �0. Of primary importance is the
fact that in the limit tf �y0

2, this distribution has an algebraic
tail,

P�tf,y0� �
1

�2�

y0

tf
3/2 . �12�

Regarding the distribution of the area A=0
tfy�t��dt� swept

under a Brownian curve until its first-passage time, we
choose V�y�=y in Eq. �6� so that T=A. Then Eq. �9� with
V�y0�=y0 has the solution

P̃�s,y0� =
27/6s1/6

��1

3
�31/3

�y0K1/3��8sy0
3

9
� , �13�

where K1/3�z� is a modified Bessel function �17�. The
Laplace transform in Eq. �13� can be inverted to give the
distribution P�A ,y0� for all A�0 and all y0�0 �20,22�,

P�A,y0� =
21/3

32/3��1

3
�

y0

A4/3 exp�−
2y0

3

9A
� . �14�

Again, for A�y0
3 this distribution has an algebraic tail

P�A,y0� =
21/3

32/3��1

3
�

y0

A4/3 . �15�

Although the above results are relatively standard, the back-
ward Fokker-Planck technique used will prove useful in the
discussion of the inelastic case in Sec. III. The same method
was also employed in the context of an undamped particle
moving in a random Sinai potential �23�, and other examples
may be found in �24�.

B. Relationship between the discrete sequence and the
continuous Brownian motion

As mentioned above, the tails of various distributions in
the discrete case can be obtained by analyzing their continu-
ous counterparts. To make the connection between the dis-
crete and the continuous case, let us evolve the discrete se-
quence in Eq. �3� up to step n0�1, ensuring that it did not
change sign in between. At step n0, the typical value of un0
��n0�O�1�, a fact that simply follows from the central
limit theorem. Let us now consider further evolution of the
sequence for n�n0, for which while un�O�1�, the incre-
ment �un=�n�O�1�. We define a new scaled variable, yn

=un /�n0 which then evolves for n�n0 as

yn = yn−1 +
1

�n0

�n �16�

starting at yn0
=un0

/�n0�O�1� at n=n0. We next define �t
=1/n0. In the limit of large n0, �t becomes small and t= �n

INELASTIC COLLAPSE OF A BALL BOUNCING ON A… PHYSICAL REVIEW E 76, 031130 �2007�

031130-3



−n0��t can be considered as a continuous “time” variable.
Writing yn�y�t= �n−n0��t�, dividing the Eq. �16� by �t
=1/n0, and taking the limit of large n0, we get back Eq. �5�
for the continuous time Brownian motion following the iden-
tification ��t�=�n /��t=�n0�n. Thus for n�n0 �where n0 is
large�, we expect that the results for the discrete sequence
and the continuous process will coincide. Although this res-
caling argument breaks down near the collapse point itself,
as discussed in the Introduction, this is not expected to affect
the tails of the relevant distributions which govern the ap-
proach to collapse.

Using these ideas, the probability distribution P�nf ,n0� of
the number of flights nf before the collapse in the discrete
sequence, for nf �n0, can be read off the corresponding con-
tinuous result in Eq. �11� after making the substitutions yn0
=un0

/�n0 and tf = �nf −n0��t= �nf −n0� /n0, and we get

P�nf,un0
� �

1
�2�

un0

�nf − n0�3/2 exp�−
un0

2

2�nf − n0�
� . �17�

This distribution thus has a power law tail for nf �n0,

P�nf,un0
� �

1
�2�

un0

nf
3/2 . �18�

This is the expression for the probability distribution of nf
given that the sequence did not change sign up to n0�1 and
that the value of the sequence at step n0 is un0

. To calculate
the unconditional distribution, one then has to average the
expression in Eq. �18� over un0

,

P�nf� = 	P�nf,un0
�
un0

�
1

�2�

	un0



nf
3/2 . �19�

The exponent 3 /2 comes from the continuous case and hence
is universal, i.e., independent of the noise distribution ����
of the discrete sequence. Naturally, this observation is inti-
mately related to the Sparre Andersen theorem discussed ear-
lier. Note, however, that the amplitude of the power law de-
cay contains 	un0


 which depends explicitly on the noise
distribution ����.

In a similar way one can also derive, for the discrete
sequence, the behavior at the tail of the distribution P��c� of
the total time elapsed until the collapse, �c= 2

g�n=0
nf un. We

split this sum into two parts, �c=�n0
+S, where �n0

is the time
elapsed up to step n0�1 �given that the sequence did not
change sign in between� and S= 2

g�n0

nf un is the time elapsed
from step n0 up to the collapse at step nf. For large �c, S
��n0

and hence �c�S. So, to determine the distribution of �c

for large �c, we need to calculate the distribution P�S ,un0
� of

S, given un0
. Following the argument outlined before, the

distribution P�S ,un0
� can be directly read off from Eq. �14�

after the substitutions tf = �nf −n0��t= �nf −n0� /n0 and yn

�y�t�=un /�n0, after first noting that

S =
2

g
�
n=n0

nf

un =
2

g
�n0 �

n=n0

nf

yn �
2

g
n0

3/2�
0

tf

y�t��dt� =
2

g
n0

3/2A .

�20�

Using Eq. �14�, we then get

P�S,un0
� � c1

un0

S4/3 exp�−
4un0

3

9gS
� , �21�

where c1= � 2
3

�2/3 /��� 1
3

�g1/3�. For large S this distribution has
an algebraic tail

P�S,un0
� � c1

un0

S4/3 . �22�

Averaging over un0
and using �c�S for large �c, we get

P��c� � c1

	un0



�c
4/3 . �23�

Once again, the exponent 4 /3 is universal since it comes
from the continuous Brownian motion and is independent of
the noise distribution ����.

Noting that the same nonuniversal quantity 	un0

 appears

in the amplitude of the tails of both the distributions P�nf� in
Eq. �19� and P��c� in Eq. �23�, we find that the amplitude
ratio,

� =
lim�c→
 �c

4/3P��c�

limnf→
 nf
3/2P�nf�

= �2

3
�2/3 �2�

���1

3
�g1/3� , �24�

is a universal number independent of the noise distribution
����, provided that this distribution is continuous and sym-
metric.

III. INELASTIC CASE

We now turn to the sequence in Eq. �2� with 0r1. As
before, the sequence starts from the initial value u0�0 and
we want to compute two quantities: �i� the distribution P�nf�
of the number of flights before the collapse, i.e., before the
velocity becomes negative for the first time, and �ii� the dis-
tribution P��c� of the total time �c= 2

g�n=0
nf un elapsed before

the collapse.
Unlike the elastic case r=1, these two distributions are

generically nonuniversal for r1 and depend quite explicitly
on the noise distribution ���� �19�. The probability Q�n ,u0�
that the sequence does not become negative up to step n,
starting with u0 at n=0, satisfies the integral equation

Q�n,u0� = �
0




Q�n − 1,u����u� − ru0�du� �25�

with the initial condition Q�0,u0�=1 for all u0�0. This
equation appeared recently in the context of the persistence
of a continuous stochastic process with discrete time
sampling �25�. There, it was shown that Q�n ,u0�
�exp�−�1�r�n� for large n, where the decay exponent �1�r�
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depends continuously on r and also on the form of the noise
distribution ����. Thus P�nf��exp�−�1�r�nf� for large nf.
For the special case of Gaussian noise ����= 1

�2�
exp�

−�2 /2�, various methods have been developed to determine
the decay constant �1�r� accurately, though an exact explicit
solution is still missing �25�. In the Appendix, we show how
to explicitly determine �1�r� for the exponentially distributed
noise ����= 1

2 exp�−����, although the analysis is far from
easy. The calculation of the collapse time distribution P��c�
is even harder. However, one expects that P��c� also has a
similar exponential tail, P��c��exp�−�2�r��c� for large �c

where the decay exponent �2�r� is also nonuniversal.
In the elastic case r=1, both P�nf� and P��c� have power

law tails. This means that both the decay exponents �1�r� and
�2�r�, characterizing the exponential tails for r1, must van-
ish as one approaches the elastic limit r→1. We show later
in this section that these two exponents vanish in a universal
fashion in the limit r→1: �1�r��a�1−r� and �2�r��bg�1
−r�3/2, where a=1 and b=0.405 024. . . are universal con-
stants independent of the noise distribution ����. The reason
for this universality can be traced to the fact that in the limit
r→1, the discrete sequence in Eq. �2� can be approximated
by a continuous time Ornstein-Uhlenbeck process.

A. Continuous time Ornstein-Uhlenbeck process

Consider a stochastic process y�t� evolving via the con-
tinuous time Ornstein-Uhlenbeck �OU� equation

dy

dt
= − �y + ��t� , �26�

where ��t� is a zero mean white noise with correlator
	��t���t��
=��t− t�� and the motion starts at y�t=0�=y0. This
represents the Langevin equation of a particle moving in a
parabolic potential. We compute below the probability distri-
butions of the two quantities of interest: �i� the first-passage
time tf at which the process first crosses zero and �ii� the area
swept out by the process until its first-passage time, A
=0

tfy�t��dt�.
As was the case with the ordinary Brownian motion stud-

ied in Sec. II A, we first consider the general case where we
compute the probability distribution P�T ,y0� of the observ-
able T=0

tfV�y�t���dt�. Using the same backward Fokker-
Planck technique, it is straightforward to show that the

Laplace transform P̃�s ,y0� satisfies the differential equation
in y0,

�1

2

�2

�y0
2 − �y0

�

�y0
− sV�y0��P̃�s,y0� = 0, �27�

with the boundary conditions P̃�s ,y0→0�=1 and P̃�s ,y0

→
�=0. To calculate the first-passage time distribution, we
choose V�y�=1, so that T= tf. With V�y0�=1, the exact solu-
tion of Eq. �27� is given by

P̃�s,y0� = e�y0
2/2D−s/��y0

�2��
D−s/��0�

, �28�

where Dp�z� is the parabolic cylinder function of index p and
argument z �17�. It is not easy to invert the Laplace transform
in Eq. �28� to obtain explicitly the first-passage time distri-
bution P�tf ,y0�. However, there is an alternative way to ob-
tain P�tf ,y0�. We note that P�tf ,y0�=− d

dt �Q�t ,y0��t=tf where
Q�t ,y0� is the probability that the process does not cross zero
up to time t, starting at y0. An exact expression of the sur-
vival probability Q�t ,y0� is known, see, e.g., �22,25�,

Q�t,y0� = erf� y0
��e−�t

�1 − e−2�t� . �29�

Differentiating Eq. �29� with respect to t and setting t= tf we
get

P�tf,y0� =
2y0�3/2e−�tf

���1 − e−2�tf�3/2
exp�−

�y0
2e−2�tf

�1 − e−2�tf�� . �30�

It is amusing, but rather hard to see immediately, that the
Laplace transform of Eq. �30� is indeed given by Eq. �28�. It
follows from Eq. �30� that the first-passage time distribution
has an exponential tail,

P�tf,y0� �
2

��
y0�3/2 exp�− �tf� �31�

for tf �1/�. Note that the decay coefficient � characterizing
the exponential tail can also be computed directly from the
Laplace transform in Eq. �28�. Thus, since one can show that
D−s/��0�=��2s/2� /�� s

2� + 1
2

�, it follows that the Laplace trans-
form in Eq. �28� has poles at s=−�2m+1�� where m
=0,1 ,2 , . . .. The smallest negative pole �corresponding to
m=0� is at s=−�, which indicates that asymptotically for
large tf, the distribution P�tf ,y0��exp�−�tf�.

We next compute the distribution of the area A
=0

tfy�t��dt� swept out by the process until its first-passage
time by choosing V�y�=y so that T=A. Then Eq. �32� with
V�y0�=y0 can also be solved explicitly,

P̃�s,y0� = e�y0
2/2

Ds2/2�3��2��y0 + s�−2��

Ds2/2�3��2s�−3/2�
, �32�

where Dp�z� is the parabolic cylinder function. Once again, it
is hard to invert the Laplace transform in Eq. �27� exactly.
However, we anticipate that asymptotically the area distribu-
tion has an exponential tail

P�A,y0� � exp�− �A� . �33�

The decay constant � must equal the smallest negative pole
of the Laplace transform in Eq. �32�. The poles of the
Laplace transform occur at the zeros of the denominator in
Eq. �32�. Thus � is the smallest positive root of the equation
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D�2/2�3�− �2��−3/2� = 0. �34�

Hence the scaled variable �=��−3/2 /�2 satisfies the equation
D�2�−2��=0. Numerically, we find the smallest root, �
=0.572 79. . .. which determines � exactly,

� = �2��3/2 = 0.810 048 . . . �3/2. �35�

It is difficult to determine the prefactor in Eq. �33�. However,
knowledge of Eq. �35� is sufficient for the present purpose.

B. Relationship between the discrete sequence and the
continuous OU process

In this section, we show that as one approaches the elastic
limit, r→1, the discrete sequence in Eq. �2� can be approxi-
mated by the continuous OU process in Eq. �26� with �=1.
This is subtle, since the elastic limit itself, when r=1, corre-
sponds to Eq. �26� with �=0. To see what is going on, we
first note from Eq. �2� that as the process evolves one can
derive the general result

	un
2
 = 1 + r2	un−1

2 
 =
1 − r2n

1 − r2 + r2nu0
2. �36�

Therefore for r1 and as n→
, the velocity distribution
tends to evolve towards a stationary distribution character-
ized by a second moment which also approaches its station-
ary value, 	un

2
→1/ �1−r2�. Thus in the limit �=1−r→0, the
typical value of the velocity in its stationary state becomes
large, un�1/��. It also follows from Eq. �36� that the num-
ber of steps n0 needed for the system to reach this stationary
state diverges as �→0, n0�1/�. This suggests that we de-
fine a scaled variable yn=un

�� which will also be of O�1� for
n�n0 for the process which is constrained to be positive up
to n0�1. Note that � plays a similar role as 1 /n0 in Sec. II B.
For n�n0, the variable yn evolves via the recursion

yn − yn−1 = − �yn−1 + ���n �37�

starting at yn0
=un0

�� at n=n0. The rest follows as in Sec.
II B. We choose �t=� which is small in the elastic limit �
→0, and hence t= �n−n0��t becomes a continuous “time”
variable. Writing yn�y�t= �n−n0��t�, dividing Eq. �37� by
�t=�, and taking the limit �→0, we find that y�t� becomes
an OU process as in Eq. �26� with �=1 and ��t�=�n /��
=�n /��t. Thus for n�n0 �where n0�1/� is large�, we ex-
pect that the results for the discrete sequence can be obtained
from those of the continuous process.

For example, the probability P�nf ,un0
� that the ball under-

goes nf flights before it collapses, for nf �n0, can be read off
from the corresponding continuous result in Eqs. �30� and
�31� after substituting tf = �nf −n0��t= �nf −n0��, yn0

=un0
��,

and �=1. For nf �n0, the distribution decays exponentially,

P�nf,un0
� �

2
��

un0
�3/2 exp�− �nf� . �38�

As explained earlier, in general for any r1, we expect
P�nf��exp�−�1�r�nf� for large nf. The result in Eq. �38�
shows that in the elastic limit r→1, �1�r�→�=1−r indepen-
dent of the noise distribution.

In a similar way, one can find the tail of the distribution
P��c� of the total time �c= 2

g�n=0
nf un, elapsed until the col-

lapse, knowing the tail of the area distribution in Eq. �33�.
The steps are very similar to those in Sec. II B, except for the
fact that one replaces n0 by 1/�. For example, as in Eq. �20�,
we find that for large �c, �c�S� 2

g�−3/2A where A is the area
swept out by the continuous OU process until its first-
passage time. Using the asymptotic distribution of A in Eq.
�33� and substituting �=1, we then find that for large �c

P��c� � exp�−
1
�2

�g�3/2�c� , �39�

where �=0.572 79. . . is the smallest positive root of D�2

�−2��=0. Since, for generic r1, P��c��exp�−�2�r��c�, we
find from Eq. �39� that the decay constant �2�r� vanishes in
the elastic limit r→1 in the following fashion:

�2�r� � bg�1 − r�3/2, �40�

where b=� /�2=0.405 024. . .. is the smallest positive root of
D2b2�−2�2b�=0, and is a universal constant independent of
the noise distribution ����.

IV. DISCUSSION

The relevance of the analysis presented in this paper may
be summarized thus: Inelastic collapse processes persist in
the presence of noise with features that are broadly universal
when the coefficient of restitution is close to unity. In the
highly complex world of real granular materials �1–3� this
gives comfort in the pursuit of simple descriptions of the
way such materials behave. Although the model studied is
simplistic, and may be refined in many ways, we believe the
global features observed are broadly correct in respect of the
statistics of the approach to collapse and will withstand more
detailed scrutiny. That is not to say that a more thorough
investigation would not be welcome or desirable. One might,
for example, considering modifying Eq. �2� to include a
velocity-dependent bias term which accounts for the in-
creased likelihood that the platform velocity at impact will
be positive when the velocity of the ball becomes very small,
see, e.g., �14,16�. Such a term will act to increase the first
passage time to a negative velocity; the details will be model
specific. However, the results presented will still be relevant
as regards the dynamics of the ball while its velocity is suf-
ficiently large that the bias term is “insignificant,” which
invites one to reconsider the precise definition of the point of
collapse. Such considerations go beyond the scope of the
present work.

We conclude by briefly considering the distribution of the
maximum value, M, attained by the process given by Eq. �2�
during a first passage. This is actually quite straightforward
to compute and provides a different perspective on the ap-
proach to collapse. We first consider the continuous process
Eq. �26� with the initial condition y�t=0�=y0 on the interval
�0,L� and with absorbing barriers at y=0 and y=L. Let
P0�L ,y0� be the probability that the process is absorbed at
y=0. Then P0�L ,y0� is equivalent to the probability that y�t�
does not reach L during its first passage, i.e., P0�L ,y0�

SATYA N. MAJUMDAR AND MICHAEL J. KEARNEY PHYSICAL REVIEW E 76, 031130 �2007�

031130-6



= P�ymL �y0� where ym=max�y�t� :0� t tf�. It follows us-
ing a well-known result that �26�

�1

2

�2

�y0
2 − �y0

�

�y0
�P0�L,y0� = 0, �41�

with boundary conditions P0�L ,y0=0�=1 and P0�L ,y0=L�
=0. This equation is easily solved,

P0�L,y0� = 1 −
F�y0�
F�L�

; F�y� � �
0

y

e�x2
dx . �42�

The probability density, P�ym ,y0�, for the maximum value ym

is given by evaluating P�ym ,y0�= ��P0�L ,y0� /�L�L=ym
. Let us

now consider the discrete problem for the elastic case with
r=1. Setting �=0 one finds that P�ym ,y0�=y0 /ym

2 for ym

�y0. Following the procedure described in Sec. II B, the tail
of the discrete distribution is then given by P�M��M−2. For
the inelastic case with r1, one sets �=1 and follows the
procedure described in Sec. III B. The tail of the discrete
distribution when �=1−r is small is then given by P�M�
�exp�−�M2�. Thus the velocity of the ball during the inelas-
tic collapse process is unlikely to attain at any time a value
significantly greater than �1/��.

APPENDIX: EXPLICIT RESULTS FOR THE
EXPONENTIAL DISTRIBUTION

In this appendix we consider the discrete sequence un
=run−1+�n, with an exponential noise distribution ����
= 1

2 exp�−����. The aim is to present an explicit calculation of
the decay constant �1�r�, characterizing the exponential tail
of the distribution of the number of flights until the collapse,
P�nf��exp�−�1�r�nf� for large nf. The analysis complements
and adds to that provided in �19�. To proceed, let us define
Pn�u �u0� to be the probability that the velocity after the nth
collision is u, given that the velocities after all the preceding
�n−1� collisions had been positive and that the initial veloc-
ity is u0. Clearly, Pn�u �u0� satisfies the following recursion:

Pn�u�u0� =
1

2
�

0




Pn−1�u��u0�e−�u−ru��du� �A1�

starting from the initial condition, P0�u �u0�=��u−u0�.
Knowing Pn�u �u0� one can then calculate Q�n ,u0�, the prob-
ability that there is no collapse until the nth step, by integrat-
ing over all possible velocities at the nth step, Q�n ,u0�
=0


Pn�u �u0�du. The distribution of the number of flights
before the collapse is then simply P�nf ,u0�=Q�nf −1,u0�
−Q�nf ,u0�. Thus to derive the tail behavior of P�nf ,u0� for
large nf, we just need to know the solution of Eq. �A1� for
large n. One expects that asymptotically for large n,
Pn�u �u0�→�nf�u� �25�, where the information about u0 is
contained in the proportionality constant. Substituting this
asymptotic form into Eq. �A1�, one obtains an integral-
eigenvalue equation for f�u�,

�f�u� =
1

2
�

0




f�u��e−�u−ru��du�, �A2�

where the eigenvalue ��r� depends continuously on r.
This integral equation can be transformed, on differenti-

ating twice with respect to u, into a differential equation

�� d2

du2 − 1� f�u� = −
1

r
f�u

r
���u� . �A3�

For u0, the right-hand side vanishes and one easily gets
the solution

f�u� = Aeu, �A4�

where A is an arbitrary constant and we have used the physi-
cal boundary condition, f�u→−
�=0. For u�0, the right-
hand side of Eq. �A3� represents a nonlocal term and the
solution is nontrivial. The form of Eq. �A3�, however, sug-
gests one seeks a solution of the form f�u�=�m=0


 cme−u/rm
for

u�0. This ansatz indeed satisfies Eq. �A3� provided the co-
efficient cm satisfies the recursion, cm=cm−1 / ��r�1−r−2m��.
Iterating this recursion, we can express every cm with m
�0 in terms of a single constant c0. The solution for u�0 is
then given by

f�u� = c0�e−u + �
m=1


 ��− �r�−m�
k=1

m
r2k

�1 − r2k��e−u/rm� .

�A5�

We then need to match the solutions for u0 in Eq. �A4�
and u�0 in Eq. �A5� at u=0, i.e., the function f�u� and its
first derivative df /du must be continuous at u=0. The first
condition determines c0 in terms of A. The second condition
determines ��r� which is given by the largest positive root of
the equation

2 + �
m=1




�− �r�−m�1 + rm��
k=1

m
r2k

�1 − r2k�
= 0. �A6�

As pointed out in �19�, expressions of this type may be writ-
ten in an alternative form using identities known from the
theory of q-series. Thus one can rewrite Eq. �A6� as

�
n=0




�1 − �−1r2n+1� + �
n=0




�1 − �−1r2n� = 0. �A7�

Using the q-product notation, �t ,q�
��n=0

 �1− tqn�, this can

in turn be written succinctly as

��−1r,r2�
 + ��−1,r2�
 = 0. �A8�

Clearly, when r=0 the solution of Eq. �A7� is �=1/2, which
is expected since the velocities are uncorrelated and the
probability of un not changing sign is just �1/2�n. More gen-
erally, it is evident by inspection of Eq. �A7� that r���1,
so it follows that ��r=1�=1. For any arbitrary value 0r
1, one can easily determine ��r� numerically. Thus, for
example, one finds ��0.2�=0.588 203. . ., ��0.4�
=0.670 041. . ., ��0.5�=0.712 667. . ., ��0.6�=0.757 826. . .,
��0.8�=0.860 729. . ., etc.
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Since Pn�u �u0�����r��nf�u� for large n, we get Q�n ,u0�
����r��n as n→
. This implies that the distribution of the
number of flights P�nf ,u0��exp�−�1�r�nf� for large nf

where

�1�r� = − ln���r�� �A9�

with ��r� obtainable from Eq. �A7� as indicated. Thus for the
special noise distribution ����= 1

2 exp�−����, it is possible to
obtain �1�r� to arbitrary accuracy for all 0�r�1. Since
��r�→1 as r→1 it follows that �1�r� vanishes when r=1. To
examine how, let us consider the function h�t ,q�
��t ,q2�
 / �tq ,q2�
. It is easy to see by canceling factors that
the function h�t ,q� satisfies the functional equation
h�t ,q�h�tq ,q�=1− t. By taking logarithms and expanding
ln h�t ,q� as a power series in t one finds a formal solution

�19� from which one may show as q→1− that

h�t,q� �
1 − t

�1 − tq
� ln t

2 ln q
+

1

2
�1/2�� ln t

2 ln q
+

1

2
�

�� ln t

2 ln q
+ 1� .

�A10�

We now note that one can write Eq. �A8� as h��−1 ,r�=−1.
By setting t=�−1 and q=r in Eq. �A10� and setting the right-
hand side of Eq. �A10� equal to −1, it follows that ��r��r
+�2/��1−r�3/2+¯ as r→1. By invoking Eq. �A9� it then
follows in turn that �1�r��1−r−�2/��1−r�3/2+¯ as r
→1. This supports the more general claim in the main
text that �1�r��1−r as r→1 irrespective of the noise
distribution.
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